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INTRODUCTION

Conventional steel lateral force-resisting systems
(LFRSs) that comply with current building codes 

and the AISC seismic provisions (AISC, 2010) used in the 
United States are typically expected to suffer damage dur-
ing moderate to severe earthquakes. Designed in accordance 
with prescribed detailing requirements proven by research 
to ensure ductile response (and protect occupants), these 
structural systems are not expected to collapse during a 
severe earthquake but will likely require significant repairs 
following a design level earthquake. Furthermore, the struc-
ture could be left with significant residual drifts and visible 
leaning following the earthquake (AIJ, 1995; Krawinkler et 
al., 1996; Kawashima et al., 1998; Christopoulos et al., 2003; 
Pampanin et al., 2003). Thus, although current conventional 
LFRSs can meet the code-specified objective of collapse 
prevention for standard buildings, significant structural 
damage occurs (albeit controlled damage), preventing use 
of the building for a significant repair period after a design 
level earthquake and possibly leading to demolition of the 

building in some cases. This seismic performance is typi-
cally expected for conventional LFRSs of any material and 
construction.

Recent research (Winkley, 2011; Clayton, 2013; Dowden, 
2014) on self-centering steel plate shear walls (SC-SPSWs) 
has demonstrated that structures can be designed to achieve 
greater performance objectives by providing frame recenter-
ing capabilities after a seismic event, together with replace-
able, energy-dissipating components. This self-centering 
capability in SPSWs is achieved here by using beam-to-
column post-tensioned (PT) moment rocking frame con-
nections, similar to what was done in past research on 
self-centering moment frames (e.g., Ricles et al., 2002; 
Christopoulos et al., 2002; Garlock et al., 2005; Rojas 
et al., 2005). However, to be fully successful, such self- 
centering strategies need to account for the interaction (due 
to the PT boundary frame expansion) between the LFRS 
and the gravity frame. Because self-centering buildings 
could economically provide a level of protection designated 
as available for “immediate occupancy” following an earth-
quake, this design strategy makes sense from a life-cycle 
cost perspective.

Toward that goal, this paper presents information on the 
analytical modeling and kinematics of a SC-SPSW with 
the proposed NewZ-BREAKSS (NZ) rocking connec-
tion (Dowden and Bruneau, 2011), a beam-to-column joint 
detail inspired by a moment-resisting connection developed 
and implemented in New Zealand (Clifton, 1996, 2005; 
Clifton et al., 2007; MacRae et al., 2008). This PT beam-
to-column (i.e., horizontal boundary element–to–vertical 
boundary element, or HBE-to-VBE) rocking connection 
seeks to eliminate PT boundary frame expansion (i.e., beam 
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growth) that occurs in all the other previously researched 
rocking connections (referenced earlier). First, a review of 
the basic principles of the NZ-SC-SPSW is presented, from 
which equations for the moment, shear and axial force dia-
grams along the HBE are obtained from a capacity design 
approach based on yielding of the SPSW infill web plates. 
Using the derived equations, numerical models are then 
developed and results are compared with the closed-form 
analytical equations. Next, additional insight on the global 
force-displacement response of the NZ-SC-SPSW frame is 
provided through nonlinear monotonic pushover analyses. 
Furthermore, detailed free-body diagrams are developed to 
investigate infill web plate demands with frames with HBE-
to-VBE rocking connections. Finally, insight on unrestrained 
PT boundary frame expansion of frames with HBE-to-VBE 
rocking connections gained from experiments (Dowden and 
Bruneau, 2014; Dowden et al., 2016) is provided, leading to 
an improved NewZ-BREAKSS detail.

BASIC PRINCIPLES OF  
THE NZ-SC-SPSW SYSTEM

An SC-SPSW differs from a conventional SPSW in that 
HBE-to-VBE rigid moment connections in a conventional 
SPSW are replaced by PT rocking moment connections. 
This allows a joint gap opening to form between the VBE 
and HBE interface about a rocking point, leading to a PT 
elongation, which is the self-centering mechanism. This 
particular rocking connection then eliminates PT bound-
ary frame expansion typically encountered in the previously 
researched connections (that rock about both of their beam 
flanges) by, instead, maintaining constant contact of the 
HBE top flange with the VBEs during lateral drift. By doing 
so, when one of the rocking joint “opens,” the rocking joint 
at the opposite end of the HBE “closes,” as shown schemati-
cally in Figure 1a. As a result, the net gap opening (due to 
PT boundary frame expansion) is zero over the full length 
of the HBE. However, in this configuration, the PT elements 
require anchorage to the HBE, and while the PT at the open-
ing joint will always contribute to frame recentering, the PT 
element at the closing joint may or may not, depending on 
the relationship between the initial PT force provided and 
the instantaneous frame drift.

A schematic of the NewZ-BREAKSS detail is shown in 
Figure 1b. In that figure, the connection detail includes an 
initial gap at the bottom of the HBE flanges, which allows 
rocking about the HBE top flanges only. As a result, during 
frame sway, an immediate increase and decrease of PT force 
occurs at the opening and closing joint locations, respec-
tively. Compared to frames with HBE-to-VBE rocking joints 
that rock about both flanges (i.e., flange-rocking, or FR, 
connections), this results in a reduced PT boundary frame 
stiffness because, for FR connections, a delay in relative 

HBE-to-VBE gap opening occurs (because both top and 
bottom HBE flanges are initially in contact with the VBE). 
For frames detailed with FR connections, this frame type 
has the benefit that, at incipient initiation of joint gap open-
ing (referred to as the condition when the “decompression-
moment” strength of the joint is reached), the joint stiffness 
is comparable to that of a rigid-moment connection. Addi-
tionally, PT boundary frame stiffness softening also occurs 
with frames detailed with the NewZ-BREAKSS connec-
tion due to the relaxation of the PT elements at the closing 
joints during frame sway. However, scaled and full-scale 
tests (Dowden and Bruneau, 2014; Dowden et al., 2016) 
have shown that the absence of a decompression moment 
and relaxation of the PT elements at the closing joints do not 
have a detrimental effect on the response of NZ-SC-SPSWs.

Furthermore, the base connection of the VBEs for an 
SC-SPSW should be detailed such to allow free rotation 
without the formation of a plastic hinge mechanism (in con-
trast to conventional SPSWs, where a fixed VBE base con-
nection is typically assumed). If a plastic hinge is able to 
form at the base of the VBE member, this could limit the 
self-centering potential of the PT boundary frame. Further-
more, providing a foundation detail free of damage would 
also use the SC-SPSW to its full potential. As a result, the 
only needed replaceable elements after a moderate or design 
level earthquake would be the infill web plates because all 
other elements are designed to remain essentially elastic.

Figure  1c shows the free-body diagram (FBD) of a 
NZ-SC-SPSW frame,

where
PS1 =  PT axial compression force applied to the HBE 

at the gap opening joint

PS2 =  PT axial compression force applied to the HBE 
at the gap closing joint

Vi  =  externally applied lateral forces at story i due to 
applied seismic forces

VBASE =  total base shear

MBASE =  total base overturning moment

ω  =  diagonal tension yield force developed by the 
steel web plates

All other terms have been previously defined. The diagonal 
tension yield forces of the web plate, ω, can be resolved into 
vertical and horizontal components on the VBE and HBE as 
provided in Equations 1 and 2 (Sabelli and Bruneau, 2007; 
Berman and Bruneau, 2008), respectively:
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where
wcx and wcy =  horizontal and vertical components, 

respectively, along the height of the VBEs

wbx and wby =  horizontal and vertical components, 
respectively, along the length of the HBEs

Fyp and t =  yield stress and thickness of the web 
plate, respectively

α  =  angle of inclination of the diagonal 
tension field from the vertical axis, 
as typically calculated for SPSWs 
(AISC, 2010)

Here, forces shown on the FBD are taken assuming that the 
web plate thickness varies proportional to increasing story 
shears. Furthermore, the PT boundary frame is designed to 
essentially remain elastic, and hysteretic energy dissipation 
is intended to be provided by the infill web plates only.

The total hysteretic response of an NZ-SC-SPSW is pro-
vided by the combined elastic response of the PT boundary 
frame and the inelastic energy dissipation of the infill web 
plates. The idealized tension-only cyclic hysteretic response 
assuming a rigid boundary frame and an elastic-perfectly 
plastic hysteretic model of the infill web plates is shown in 
Figure 2. In particular, the PT boundary frame stiffness is 
bilinear elastic, where a reduced secondary PT boundary 

frame stiffness occurs when the PT at the closing joint 
becomes fully relaxed; analytical and experimental results 
(Dowden and Bruneau, 2014) show that this phenomenon 
has no significant detrimental effect on structural behavior 
and can be accommodated by design. Furthermore, past 
research has shown that solid infill web plates do not exhibit 
a tension-only behavior (as typically assumed for design), 
but some compression strength of the infill web plate devel-
ops due to the deformation of the infill web plate through 
tension field action (Winkley, 2011; Clayton, 2013; Webster, 
2013; Dowden, 2014). However, recent research has also 
shown that, for dynamic earthquake loadings, this compres-
sion effect provides a slight amount of additional energy dis-
sipation and strength but does not affect frame recentering 
(Dowden and Bruneau, 2014; Dowden et al., 2016).

HBE FREE-BODY-FORCE DIAGRAM

To understand the behavior of an NZ-SC-SPSW system, 
the moment, shear, and axial force diagrams for the HBE 
are first developed based on first principles. First, Figure 3 
shows the general FBD of HBE and VBE elements located at 
an intermediate floor level of an SC-SPSW frame once the 
web plate has fully yielded, where Wbx1, Wbx2 and Wby1, Wby2 
are, respectively, the horizontal and vertical force resultants 
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Fig. 1. NZ-SC-SPSW: (a) rocking joints; (b) rocking joint detail; (c) yield mechanism.
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along the length of the HBE; Wcx1, Wcx2 and Wcy1, Wcy2 are, 
respectively, the horizontal and vertical force resultants 
along the height of the VBE; subscripts 1 and 2, respectively, 
denote the level below and above the HBE (here assuming 
that the force components labeled with subscript 1 are larger 
than subscript 2 associated with a thicker web plate below 
the HBE than above); H is the story height; and all other 
terms have been previously defined. Note that the vertical 
HBE end reactions would have to be resisted by a shear tab 
connection to the VBE (or equivalent); however, for clarity, 
the shear tab is not shown in the FBD illustrated.

Next, Figure 4 shows the resultant force FBD of an inter-
mediate HBE for the condition shown in Figure 3 (neglect-
ing gravity forces), 

where
Vi  =  story shear force (as presented in Dowden et 

al., 2012, for the flange-rocking SC-SPSW) 
and is assumed to be equally distributed on 
each side of the frame

Wbx  =  infill web plate horizontal yield force 
resultant along the length of the HBE

Wby  =  infill web plate vertical yield force resultant 
along the length of the HBE

PHBE(VBE)  =  horizontal reaction at the rocking point of 
the yield force resultant of the infill web 
plate acting on the VBE (as presented in 
Sabelli and Bruneau, 2007)

Ps  =  PT force

PsVBE  =  horizontal reaction of the post-tension force 
at the rocking point

R1  =  vertical reaction required for equilibrium 
of the vertical yield force component of the 
infill web plate along the HBE, as shown in 
Figure 5

R2  =  vertical reaction required for equilibrium of 
the horizontal yield force component of the 
infill web plate along the HBE, as shown in 
Figure 6

R3  =  vertical reaction required for equilibrium 
of the post-tensioned forces acting on the 
HBE, as shown in Figure 7
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Fig. 3. Resultant force free-body diagram.
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y  =  distance from the HBE neutral axis to the 
centroid of the PT

d  =  depth of the HBE

R =  length of the radius corner cutout of the 
infill plate and represents the length of 
the end segments of the HBEs where the 
infill web plate is not attached as shown in 
Figure 1b (and will be further addressed 
subsequently)

L1  =  length of the HBE that corresponds to the 
HBE-to-VBE rocking point to the location 
of the post-tension anchor at the “opening 
joint” end of the HBE

L2  =  length of the HBE that corresponds to the 
HBE-to-VBE rocking point to the location 
of the post-tension anchor at the “closing 
joint” end of the HBE

L  =  clear span of the HBE. Also, it is assumed 
that the boundary frame and PT remain 
elastic and only the infill web plate yields

Furthermore, in Figure 4, the location of the PT anchor 
point along the beam will depend on the strain demands of 
the PT elements at the maximum target drift. The anchor 
location should be provided such to ensure that the PT 
strains remain elastic up to that drift demand. Additionally, 
to clarify the effects of Ps1 and Ps2, each Ps component is 
composed of two forces: the initial post-tension force Po, 
applied prior to drift and the force induced due to post- 
tension elongation during building drift, ΔP. For the condi-
tion shown, from geometry, elongation of post-tension will 
occur in Ps1 while “relaxation” of the post-tension element 
Ps2 will occur (for reasons described earlier), resulting in the 
following post-tension forces on the HBE:
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Here, the subscripts 1 and 2 refer to the equation variables 
located on the HBE segment at the opening and closing 
joint, respectively, and

LPT  =  length of the post-tension elements

APT  =  area of post-tension

EPT  =  modulus of elasticity of the post-tension

Δloss  =  axial shortening that occurs along the HBE span 
length between the end of the HBE to the post-
tension anchor point locations on the HBE

Δdrift  =  drift-induced elongation of the post-tension 
elements at the HBE-to-VBE joint connection 
producing the incremental force ΔP, calculated 
as:

 
= ϕΔ +⎛

⎝
⎞
⎠

d
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2
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where ϕdrift is the relative HBE-to-VBE joint rotation in units 
of radians, and all other terms have been defined previously. 
From Equations 3 and 4, for a given lateral frame drift, an 
increase in force Ps1 results in a simultaneous decrease in 
force of Ps2 (and vice versa for lateral drift in the opposite 
direction). Additionally, if the force ΔP equals Po, Ps2 will 
become fully “relaxed,” and this force component will van-
ish. In other words, for the condition when Δnet (i.e., Δdrift 
less Δloss) is equal to or greater than Δo, Ps2 will equal 
zero. Consequently, the effectiveness of Ps2 depends on the 
amount of initial post-tension force Po as well as the maxi-
mum drift reached.

To calculate the loss in post-tension force from HBE 
axial shortening, using the PT located at the opening joint 
location to illustrate (as that condition will govern the PT 
design), equilibrium of axial forces in the post-tension ele-
ments requires that the increase in tension forces in the 
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Fig. 4. Complete force-resultant free-body diagram of HBE.
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post-tension elements equals the increase in compressive 
forces on the HBE (Garlock, 2002). For SC-SPSW systems, 
for equal story force at each end of the HBE (i.e., Vi/2 each 
end of the SC-SPSW frame), the post-tension force losses 
are attributed to the HBE axial shortening under the axial 
compression force from the VBE and the axial compres-
sion force due to the post-tension elongation during lateral 
drift (with the simplified assumption of rigid VBEs). Fur-
thermore, the PT force contributing to HBE axial shorten-
ing along the length of the HBEs between PT anchor points, 
is a smaller fractional value of the tension force in the PT 
elements; a schematic of this is illustrated in Figure 8. The 
calculation of PT force losses due to HBE axial shortening 
then follows:

 

( )=Δ × +P SF L

A E

P L

A E
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HBE VBE

HBE HBE
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where
SF  = some scale factor (presented subsequently)

PPT  = force in the post-tension element (i.e., Ps1)

AHBE  = cross-section area of the HBE

EHBE  = modulus of elasticity of the HBE

All other terms have been previously defined. Next, solving 
Equation 6 for PPT leads to the following:
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Correspondingly, the net effective axial tension force in 
the post-tension elements is the elongation due to drift minus 
the axial shortening of the HBE that occurs along the length 
of the post-tension elements and is calculated as follows:
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Next, equating Equations  7 and 8, then solving for Δloss, 
leads to the amount of post-tension relaxation that should be 
considered for design and is calculated as:
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where the SF and the post-tension axial stiffness terms have 
been combined such that:
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and, from Figure 8, the scale factor can be approximated as:
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y  =  distance of the PT from the HBE centroid

d  =  depth of the HBE

Finally, the resulting equations for Ps, for the rightward 
drift condition shown in Figure  1c, which includes losses 
due to HBE axial shortening, is obtained by substituting 
Equation 9 into Equations 3 and 4, leading to:
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where, in Equations 12 and 13, kb1 and kb2 are the HBE axial 
stiffness along length L1 and L2, respectively.

Development of HBE Moments

The moment distribution to be used in the design of an HBE 
incorporating self-centering components can be determined 
from the free-body diagram of Figure 4. As indicated in that 
figure, five locations along the HBE are considered: the two 
segments of HBE where the infill web plate is cut out (thus 
not connected to the HBE flange), the two segments of the 
HBE between the infill web plate corner cutout and the post-
tension anchor point, and the segment of the HBE between 
the post-tension anchor points along the length of the HBE. 
These locations, for the purpose of presentation, are desig-
nated as zone 1, zone 2, zone 3, zone 4, and zone 5. The FBD 
for zone 1 is shown in Figure 9.

Furthermore, for illustration purposes, in Figure  9 the 
horizontal compression reaction at the HBE-to-VBE flange 
rocking point and vertical HBE end reaction (components 
shown in Figure 4) are combined into a single variable C 
and RA, respectively. The determination of the HBE flexural 
strength demand then follows by taking moment equilib-
rium at the HBE section cut 1; the moment relationship in 
terms of force resultants is:
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Substituting Equations  1 and 2, along with the equivalent 
force per unit length quantities for the resultant forces 
defined earlier, into Equation  14, the resulting moment 
relationship expressed in terms of the infill web plate yield 
forces per unit length along the HBE along zone 1 is:
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Similarly, by moment equilibrium at the remaining  
sections 2 through 5, the moment distribution along these 
zones is:
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Development of HBE Shear and Axial Forces

The shear distribution to be used in the design of an HBE 
can be determined using the same FBD and procedure as 
presented earlier, which then leads to:
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 V V V R x Ra by by2 3 4 1 2( )( )= = = − ω −ω −  
(21)

 V R L R2a by by5 1 2( )( )= − ω −ω −  
(22)

Similarly, for axial forces over each of the five zones:
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 P C x Rbx bx2 1 2( )( )= − ω −ω −  (24)

 P C x R P Pbx bx s s3 1 2 1 2( ) ( )( )= − ω −ω − − +  (25)

 P C x Rbx bx4 1 2( )( )= − ω −ω −  (26)

 P C L R2bx bx5 1 2( )( )= − ω −ω −  (27)

Note that the development of the HBE moment, shear, and 
axial force formulations presented are based on a capacity 

design approach where the web plates have fully yielded. 
Consideration of PT force losses due to HBE elastic axial 
shortening has been considered. However, some vertical 
deflection of the HBE will occur due to the vertical com-
ponent of the infill web plate tension forces pulling on the 
HBE. This results in HBE-to-VBE rotational components 
that will have an influence on the actual joint gap open-
ing/closing, thus affecting the axial elongation response 
of the PT elements. However, this contribution of joint 
gap response can be neglected, without significant loss in 
accuracy, as will be observed in the following section. But 
to precisely account for this effect, a nonlinear pushover 
analysis would be needed. Furthermore, the derivations of 
the closed-form equations presented for the HBE strength 
demands assume rigid VBEs. In particular, the contribu-
tion of the flexibility of the VBEs contributing to PT force 
losses is neglected. Consideration of VBE flexibility can be 
included in a nonlinear pushover analysis once the numeri-
cal model is established (for which the equations presented 
earlier can be used to facilitate the initial design). Finally, 
as shown in Figure 4, Equations 14 through 27 were derived 
with the assumption that the story force (i.e., Vi) is equally 
distributed on each side of the frame. For the condition when 
the story force is delivered to only one side of the frame, Fig-
ure 6 would be modified to show Vi acting at location A and 
Vi = 0 at location B in that figure (note that the value of the 
reaction R2 shown in that figure would remain unchanged). 
This would have the effect of increasing the HBE moment 
and axial force demand proportionally to Vi versus Vi/2.

NUMERICAL MODEL COMPARISON

The formulations describing the distribution of moment, 
shear and axial forces developed earlier were compared to 
results from nonlinear pushover analysis conducted using 
SAP2000 (CSI, 2009). Additionally, numerical modeling in 
OpenSees (Mazzoni et al., 2009) is also presented subse-
quently for reference. The example SPSW used for this pur-
pose consisted of a single-bay, single-story frame with a bay 
width of 20 feet and story height of 10 feet. The SPSW web 
plate consisted of a 16-gauge infill light-gauge plate. A total 
of eight 2-in.-diameter, Grade 270 ksi steel monostrands 
were provided at each end of the HBE with a distance of 
6 in. below the neutral axis of the HBE to the centroid of the 
tendons. An initial post-tensioning force of approximately 
20% of the yield strength of the PT was provided. The depth 
of the HBE was taken to be 18 in., corresponding to a W18 
beam.

Furthermore, a strip model was used for the infill web 
plate (Sabelli and Bruneau, 2007), as shown in Figure 10. 
Accordingly, because the hysteretic behavior of SPSWs 
relies on yielding of the infill web plate through diagonal 
tension field action, the infill web plate was conservatively 
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modeled by using a series of tension-only strips. Each of the 
strips was assigned an axial plastic hinge model to account 
for nonlinear hysteretic behavior. The PT boundary frame 
and post-tension elements were designed to remain elastic.

For the rocking connection in SAP2000, a rigid-beam ele-
ment was used as a link to model the post-tension anchor 
points to the HBE to capture the applied moment during 
rocking motion about the HBE centerline. Joint constraints 
in the translational vertical global degrees-of-freedom 
(DOF) and in-plane (HBE strong axis bending) rotational 
DOF were provided at key nodes. For the case of model-
ing in OpenSees, rigid-link beams are used in lieu of joint 
constraints (with the exception of modeling the HBE to VBE 
shear transfer). The connection models for use in SAP2000 
and OpenSees are shown in Figure 11.

For the current example, the designed SPSW is used to 

avoid abstract complexities in keeping the problem paramet-
ric. Additionally, the boundary frame members are assumed 
rigid here such that PT force losses due to HBE axial short-
ening can be ignored because this has a negligible impact on 
the results and keeps the conceptual illustration manageable. 
The formulations developed earlier are applicable regardless 
of whether PT force losses are considered. Only the Ps1 and 
Ps2 terms in the equations are affected and would need to 
include the PT force losses as presented in Equations 12 and 
13. Figure 12 provides comparisons of the moment, shear 
and axial force distributions along the length of the HBE 
using the formulations developed earlier to those with the 
numerical model of the SAP2000 analysis for a rightward 
3% drift condition. Note that because the SAP2000 model 
uses a finite number of strips to represent the infill web 
plate, the shear and axial force diagrams obtained from the 

Fig. 10. NZ-SC-SPSW model.
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SAP2000 analysis are stepped as compared to the continu-
ous force diagrams using the analytical formulations.

Furthermore, the analytical formulations are compared to 
two different SAP2000 curves labeled “actual” and “ideal-
ized,” where, for the condition of a rigid HBE, the ideal-
ized curve matches the analytical one almost perfectly for 
the moment and shear diagrams. The difference between the 
two different numerical models is that the idealized curves 
assume a pinned connection at the HBE-to-VBE flange con-
tact rocking point. This represents the idealized condition 
assumed in the development of the equations presented pre-
viously. The actual model uses the compression-only element 
shown in Figure 11, which models more accurately the real 
condition of the joint detail. To further clarify, the preceding 
derivations assume that the effects on the post-tension (i.e., 
terms Ps1 and Ps2) are exactly equal; which is essentially true 

for the rigid HBE condition if the HBE is pin connected to 
the VBEs. However, with the use of the compression-only 
element, some differences arise in response because now 
the compression force at the closing joint can be reduced 
(from the global effects captured by the numerical frame 
model that is not considered in the analytical formulations), 
leading to small differences in the kinematics governing the 
axial tension in the post-tension elements. It is also observed 
that on the SAP2000 moment and axial diagram curves, the 
post-tension force at the closing joint has not fully relaxed 
because there is a vertical step in the response curves. The 
results from the SAP2000 analysis and the corresponding 
analytical formulations compare reasonably along the full 
length of the HBE.

To provide some comparison of numerical results using 
SAP2000 versus OpenSees, a nonlinear cyclic pushover 
analysis was conducted for the one-third-scale, single-
bay, three-story NZ-SC-SPSW test frame investigated by 
Dowden and Bruneau (2014). The design parameters of the 
frame along with the corresponding numerical model are 
shown in Figure 13. Material properties consisted of ASTM 
A992, A416 and A1008 for the boundary frame, 2-in.-
diameter PT monostrands, and infill web plate members, 
respectively. The VBE column bases were detailed with a 
clevis-and-pin base to allow free rotation, and all anchor 
connections to the foundation were bolted. To model the 
nonlinear hysteretic response of the infill web plates, non-
linear axial hinge assignments were used in the numerical 
model based on results from coupon testing. Additionally, 
an initial post-tensioning force of approximately 20% of 
the PT yield strength was used. The comparison of the base 
shear versus roof drift response obtained using the programs 
SAP2000 and OpenSees is shown in Figure 14; the results 
are practically identical.

POST-TENSION FORCE EFFECTS ON  
GLOBAL FRAME RESPONSE

A general base shear versus roof displacement response for 
the NZ-SC-SPSW was presented in Figure 2, where the con-
tribution of the PT boundary frame response is observed to 
be bilinear elastic. To investigate the effects of various PT 
parameters on the response of the boundary frame, the vari-
ation in frame response when changing the initial PT force 
(To) and the quantity of PT strands (APT) is presented for the 
frame shown in Figure 13. In the following figures, response 
curves for the condition labeled 1xTo and 1xAPT correspond 
to the PT design parameters used in the test specimen (as 
a reference point). In this investigation, note that (1)  all 
other design parameters (i.e., member sections, distance of 
PT eccentricity to the rocking point, etc.) remain the same 
because changing those would require other design changes, 
and (2)  practical considerations of construction tolerances 
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are not considered because only the consequences of relative 
change in response are of interest here. Furthermore, this 
investigation is only made for the PT boundary frame, with 
the understanding that the total response is a superposition 
of the effects of the PT boundary frame and the infill web 
plate.

The variation in response due to To as the parametric 
variable is presented in Figure 15a, with APT held constant. 
Note that if significant PT yield occurs for a given To, no 
additional parametric curves are presented for that frame 
because only the elastic response of the boundary frame 
is of interest here (i.e., no yielding of PT elements, which 
would alter the frame response). It is observed that with 
To = 0 kips (i.e., 0xTo), the frame response moves along a 
single elastic curve; thus, the presence of an initial PT force 
is what defines the bilinear frame response. Of particular 
interest, the location of the transition point between the ini-
tial and secondary stiffnesses is defined by the magnitude 
of To (as shown in Figure 2). More specifically, increasing 
the initial applied PT force results in (1) a positive shift of 
that transition point along the horizontal axis, resulting in an 
increase of the initial stiffness range of response that has the 
largest stiffness along the bilinear response curve, and (2) a 
positive shift of that transition point along the vertical axis, 
contributing more strength to the hysteretic response of the 
entire system.

The variation in response due to APT is presented in Fig-
ure  15b, with To held constant. In doing so, the quantity 
of PT strands (or rods) affects the stiffness (i.e., slopes) of 
the response curves (as would be expected). Furthermore, 

as APT increases, the effects of the secondary PT bound-
ary frame stiffness (i.e., condition when To reduces to zero) 
become more dominant over the initial stiffness. This is 
due to a reduction in To in each corresponding PT strand 
(i.e., To remains constant; however, To per strand decreases 
proportional to the increase in APT). As a consequence, not 
only does increasing APT affect both initial and secondary 
stiffness of the PT boundary frame response curves, but 
increasing APT also shifts the transition point between the 
initial and secondary frame stiffness toward the axis origin 
(whereas increasing To shifts the transition point away). In 
comparison to Figure 15a, a significant increase in stiffness 
can be achieved without concern of yielding the PT ele-
ments for a target drift; however, it is at the expense of larger 
strength demands on the boundary frame than consideration 
of To alone.

INFILL WEB PLATE STRAINS EFFECTS  
DUE TO HBE-TO-VBE GAP OPENING

As presented earlier, radius corner cutouts are provided at 
the infill web plate corner locations. The primary purpose 
of this detail is to remove the portion of the infill web plate 
at the corner locations that would otherwise be subjected 
to excessive tensile strains during lateral frame drift due to 
the opening of the rocking joint (as schematically shown in 
Figure 16).

To determine the appropriate value of the radius corner 
cutout to use in design, a review of the kinematics of the joint 
detail under frame sway is necessary and is performed next, 
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based on small-angle theory. Figure 17 shows the geometry 
and parameters necessary to establish the kinematic rela-
tionships governing the infill web plate tensile strains when 
also including the HBE-to-VBE gap openings in the calcula-
tion of strains.

In Figure 17, R is the radius length of the corner cutout, 
L is the length of the adjacent infill web strip to the corner 
(shown idealized), α is the angle of inclination of the tension 
field to the vertical axis, ΔR are differential lengths depen-
dent on the value α, Δgap is the HBE-to-VBE gap opening, 
d is the depth of the HBE, and γ is the gap opening rotation. 
To determine the total cumulative axial tensile strain of the 
strip adjacent to the tip of the radius cutout, the following 
relationships are established from geometry. The length L is 
obtained from the initial condition geometry (triangle 1-2-3) 
as:

 
L

R R

sin
1=

+Δ
α  

(28)

Next, the axial tensile deformation of the infill web strip 
due to gap opening is (using the geometry of triangle 5-6-7):

 cos 90gap( ) ( )δ = Δ −α  
(29)
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The gap opening can then be calculated (using geometry of 
triangle 4-5-6) as:

 d R Rgap 2( )= γΔ Δ+ +  (30)

It is also observed that (using the geometry of triangle 1-2-3):

 

R R

R R
tan 1

2

( )
( )

α =
+ Δ
+ Δ  

(31)

Next, the differential term ΔR2 is established (for reasons 
to be made clear subsequently). To proceed, Figure 18 shows 
the additional information needed to determine this quantity.

It then follows, using triangle 1 in Figure 18 and the sine 
double-angle identity, that the parameter x1 is:

 x R R1 sin(90 ) cos= −α = α (32)

Furthermore, from the same triangle 1, the term y1 can be 
determined as follows:

 y R1 sin= α (33)

Next, from the geometry of triangle 2 in Figure 18, substitut-
ing Equation 32 for x1 and solving for y2 leads to:

 
y

R
2

cos

tan
=

α
α  

(34)

Furthermore, in Figure 18 it is observed that:

 R R y y1 22 + =Δ +  (35)

which, substituting Equations  33 and 34 for y1 and y2, 
respectively, in Equation 35 and solving for ΔR2, leads to:

 
R y y R R
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(36)

The resulting infill web plate tensile strain can then be 
expressed as:
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Substituting the terms for Δgap and (R + ΔR1) using Equa-
tions 30 and 31 into Equation 37, it then follows that:
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Next, substituting ΔR2 from Equation  36 and simplifying 
leads to:
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Finally, Equation 39 can be further simplified by the substi-
tution of the sine double-angle identity, which then results in 
the following expression:

 

d

Rsin 2

2

tan cos sin tan

cos sin tan
Totalε =

γ α α + α + α α

α + α α

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
 

(40)

Equation 40 represents the total tensile strain on the infill 
web plate for HBE-to-VBE rocking connections at a dis-
tance R away from the HBE-to-VBE flange rocking point. 
To further clarify the effects of Equation 40, for the case of 
α = 45 degrees, Equation 40 results in the following:
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d
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1 2

2

4 2
Totalε = + =

γ
+
γ

 
(41)

where, in Equation  41, Component1 is the contribution of 
tensile strain from the gap opening and Component2 is the 
contribution from lateral frame drift (i.e., a rigid panel sway 
mechanism). To further illustrate, Figure  19a shows the 
axial strain demand for several different lateral drift condi-
tions. From the results shown, the closer the infill web plate 
is to the corner (corresponding to a smaller R), the larger the 
strain demands. In particular, if R = 0, the theoretical strain 
is infinite.

Furthermore, Figure  19b shows the total axial tensile 
strain, together with the strain corresponding to each com-
ponent, for a 2% drift condition. From the results shown, 
the concentration of strains in the infill web plate due to the 
use of a rocking connection is a localized phenomenon, with 
values approaching those for the rigid-panel sway mecha-
nism away from the rocking connection gap opening. Note 
that in the examples presented, the gap rotation was assumed 
to be equal to the drift rotation, which assumes rigid sway 
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behavior as an approximation; a more exact joint rotation 
could be obtained from a rigorous frame analysis. Nonethe-
less, the preceding equations provide an approach to select 
the radius of the corner cutouts. As an example, SC-SPSW 
test specimens investigated by Dowden and Bruneau (2014) 
were detailed with an R/d ratio of approximately 1. For this 
condition shown in Figure 19a (i.e., α = 45 degrees), for the 
case of 2% roof drift, Equation 40 predicts a maximum the-
oretical infill web plate tensile strain of approximately 1.7%. 
In particular, from observations of the experimental results 
presented by Dowden and Bruneau (2014), infill web plate 
separation from the boundary frame started to develop at 
approximately 2% roof drift (a drift magnitude expected for 
a design level earthquake), propagating from the plate cor-
ners. This provides some indication that the R/d ratio of 1.0 
used in the HBE-to-VBE joint detail for the infill web plate 
corners performed reasonably well to delay the effects of 
initial web plate tearing from the boundary frame.

Finally, note that the preceding strain equations are 
applicable to any HBE-to-VBE joint rocking configura-
tion because only the distance from the rocking contact 
point to the HBE flange needs to be modified in the equa-
tions presented. For example, for a centerline-rocking 
frame (Dowden and Bruneau, 2014), d/2 (half-depth of the 
HBE) would be used in lieu of d in the equations, and for 
the NewZ-BREAKSS and flange-rocking (Clayton et al., 

2012; Dowden et al., 2012) connections, no changes to the 
equations presented are required because both connections 
follow the same kinematics at the opening joints when the 
HBE-to-VBE gap is present.

PT BOUNDARY FRAME EXPANSION:  
A DERIVATION OF UNRESTRAINED  

BEAM-GROWTH

A widespread concern with the practical implementation of 
self-centering frames with HBE-to-VBE rocking connec-
tions is the issue of “beam-growth” (i.e., frame beam elon-
gation or PT boundary frame expansion). This phenomenon 
occurs because the joint opening at each end of the beam 
(which is required in order to induce PT tensile strains for 
recentering) manifests itself as an apparent increase in hori-
zontal length of the beams (although physically the beam 
length remains essentially the same). This has the undesired 
effect of the beams pushing outward against the columns 
by the amount of the gap openings at the beam-to-column 
rocking joints. As a consequence, strength demands on the 
columns are increased (i.e., columns must flexurally deform 
to accommodate the beam growth) as well as strain compat-
ibility issues of the diaphragm connection to the beams arise 
(i.e., the diaphragm must slip/tear or deform to accommo-
date the beam growth).

Large-scale experimental investigation (Dowden and 
Bruneau, 2014; Dowden et al., 2016) of a single-bay, two-
story NZ-SC-SPSW showed that even though the NewZ-
BREAKSS rocking connection was proposed to eliminate 
beam-growth effects, a small but observable amount of 
beam growth does develop for the NewZ-BREAKSS rock-
ing connection, contrary to what was initially assumed 
(insignificant compared to connections rocking about their 
top and bottom HBE flanges but, nonetheless, required to 
be understood). As a result of this observation, closer scru-
tiny of the kinematics of this connection has lead to a better 
understanding of beam growth; equations that could be used 
to inform design and optional modifications to the NewZ-
BREAKSS detail to completely eliminate beam-growth 
effects are presented.

The analytical relationship for unrestrained beam growth 
can be obtained by reviewing the free-body diagram shown 
in Figure  20 and observing that, for the rightward drift 
shown in that figure, the rotation at the left and right VBE 
differ by an incremental amount Δθ as a result of beam 
growth, where the additional parameters in the figure are 
defined as follows:

θ   =  VBE rotation at a known drift level

h1  =  height from the VBE base to the 
bottom most rocking contact point 
of interest

LHBE  =  length of the HBE
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ΔL1  =  horizontal length due to drift 
rotation θ

ΔL2  =  horizontal length due to the drift 
gap opening θ at the opening joint

dVBE  =  depth of the VBE, which is shown 
in a position before and after 
rotation of the VBE

D1  =  flange rocking depth rotation lever 
arm

ΔV, ΔH1 and ΔH2  =  incremental dimensions dependent 
on the VBE base rotation at the 
VBE location effected by θ + Δθ

x   =  length parameter used to define 
θ + Δθ for subsequent derivation

From the parameters defined, the quantity ΔH2 is the key 
parameter needed to define the real relationship of unre-
strained beam growth (for the conditions noted later) and 
represents the change in length reduction in the bottom of 
the parallelogram (indicated in Figures 20 and 21) that takes 
into account the VBE base rotation θ + Δθ.

Note that the subsequent derivation is based on using a 
two-story frame with NewZ-BREAKSS rocking connections 

for illustration purposes. However, the formulations can be 
applied to a frame of any height and any rocking connec-
tion because (1) the height just above ground level controls 
the kinematic equations, and (2)  the parameter associated 
with the type of rocking connection affecting beam growth 
is only dependent on the depth of the rocking point rotation 
lever arm. Furthermore, in this analytical approach, the fol-
lowing simplifications and assumptions was made: (1) The 
boundary frame is taken as rigid members; (2) the rocking 
contact points are at the extreme edge of the HBE-to-VBE 
flange bearing point shown by the “Rocking Contact Point” 
indicated in Figure 20; (3)  local deformation effects at the 
rocking contact points are neglected; (4)  elevation of the 
HBEs remain unchanged for a given VBE rotation during 
drift; (5) the HBE-to-VBE joints are frictionless and no PT 
clamping force is present, allowing the joint to rotate and 
move freely; and (6) at each VBE location, the line created 
by joining the points of HBE flange rocking and VBE base 
rocking points are parallel to the longitudinal axis of the 
associated VBE.

The formulation of a relationship for unrestrained beam 
growth first requires the development of an equation for the 
incremental VBE rotation Δθ. This proceeds by first obtain-
ing all of the incremental dimensions at the base of the 
affected VBE shown in the close-up detail in Figure 20. It 
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ΔH2 ΔH1
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Reference Lines θ+Δθ θ

 Drift
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(after rotation)h1

Fig. 20. Frame beam-growth kinematics: free-body diagram 1.
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then follows, from geometry, that the vertical displacement 
at the VBE flange due to rotation is:

 V d sinVBE [ ]( )= θΔ Δ+ θ  
(42)

Next, the length of the horizontal projection of the base of 
the rotated VBE is found to be:

 L d cos( )VBE [ ]= θ Δ+ θ  (43)

The additional unknown parameter needed to completely 
define the kinematics at the base of the VBE is ΔH. Deriva-
tion of the expression for this term is done in three steps. 
First, ΔH is equal to the sum of ΔH1 and ΔH2 such that:

 H H H1 2= +Δ Δ Δ  (44)

Second, expanding Equation 44 into an expression in terms 
of tanθ shown directly in Figure 20 leads to:

 H V tan[ ]( ) ( )= θΔ ΔΔ + θ  (45)

Third, substituting Equation 42 into Equation 45 leads to:

 H d tan sinVBE [ ]( ) ( )= θΔ ΔΔ+ θ θ + θ  (46)

Toward derivation of an expression for Δθ, the horizontal 
projection of the base of the rotated VBE extending beyond 
the footprint of the VBE prior to rotation needs to be estab-
lished (i.e., ΔH2), which can be calculated as:

 

H H L d

d

2

tan sin cos 1

VBE

VBE [ ]
( )

( ) ( ) ( )
= +Δ Δ −

= θ Δ Δ Δ+ θ θ + θ + θ + θ −

 (47)

Additionally, the inside surface of the deformed frame dis-
placement can be bounded by a parallelogram from which 
the geometry θ + Δθ can be determined and from which 
Δθ can then be calculated for any known value of θ (i.e., 
typically by selecting a target drift). From the free-body dia-
gram of the parallelogram in Figure  21 for all remaining 
derivation steps, begin with defining the horizontal length 
due to frame drift as:

 L h1 1 tan( )= θΔ  (48)

The incremental horizontal length due to HBE-to-VBE gap 
opening is:

 L D2 1 tan( )= θΔ  (49)

Next, solving for tan(θ + Δθ), and substituting Equations 47, 
48 and 49 for ΔH2, ΔL1 and ΔL2, respectively, into Equa-
tion 50 leads to:

x

h

L L H

h

h D1 d

h1

tan
1

1 2 2

1

1 tan tan sin cos 1VBE[ ] [ ]

( )

( ) ( ) ( ) ( ) ( )

θ+Δθ =

=
+ +Δ Δ Δ

=
+ θ + θ+ θ θ θ ++ θ+ θ −ΔΔΔ

Δ Δ ΔL L L L H

h

1 2 2

1
HBE HBE( ) ( )

=
+ + − −

 (50)

Solving Equation 50 for tan(θ) leads to the following rela-
tionship defining unrestrained beam growth:

 
h d d

h D
tan

tan 1 sin 1 cos

1 1

VBE VBE{ }[ ] [ ]( )
( ) ( ) ( )

θ =
θ+ ΔΔΔθ − θ+ θ + − θ+ θ

+
 (51)

In this equation, all parameters have been defined previ-
ously and are known except for Δθ. One approach to solve 
Equation  51 consists of iterating on the value of Δθ until 
convergence. Once the parameter Δθ is known, the beam 
growth at each floor level can then be calculated.

Although the solution for Δθ will converge fairly quickly, 
an alternate simplified formulation can be used that provides 
an approximate solution without iteration. This is obtained 
by realizing that the reduction in length of the bottom of the 
parallelogram due to ΔH2 (from the VBE base rotation) is 
insignificant. The procedure then follows by letting ΔH2 = 0 
in the preceding derivation; thus, the expression for tan(θ + 
Δθ) simplifies to:

 

h D

h
tan

1 1

1
tan[ ]( ) ( )θ +Δθ ≅

+
θ

 
(52)

Parallelogram

X

h1 θ+Δθ θ
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Fig. 21. Frame beam-growth kinematics: free-body diagram 2.

117-136_EJQ316_2015-23R.indd   132 6/21/16   2:05 PM



ENGINEERING JOURNAL / THIRD QUARTER / 2016 / 133

Given the insignificance of ΔH2, the approximate solu-
tion to obtain Δθ using Equation 52 will be within a per-
cent accuracy compared to that using the exact relationship 
shown in Equation  51 that requires more computational 
effort. Once Δθ is known, the calculation of beam-growth 
demand at each level can be obtained. To illustrate the calcu-
lation of beam growth and the distribution along the frame 
height, using the frame shown in Figure 20 as an example, 
the calculations are made with the following assumptions:

• The story heights at each level are equal to h.

• The rocking depth at HBE level 1 and 2, respectively, 
is D1 = D2 = D.

• The height to the bottom gap opening h1 is equal to h 
to keep calculations simple for illustration purposes. 
This will lead to an approximate solution because 
h1 at the ground level is actually h1 = h − D if story 
heights are equal.

The following calculations are then made:

Step 1 Calculate the gap adjustment δ = (Δθ)(h1) due 
to beam-growth at the level 1 HBE. Because the 
adjustment is required at the level 1 HBE, the 
bottom of flange gap opening is zero (i.e., in 
bearing contact with the VBE flange). The top of 
flange gap opening is equal to (D)(θ + Δθ).

Step 2 Calculate the gap openings at the roof HBE. The 
bottom of flange gap is equal to (Δθ)(2h); this 
represents the incremental gap opening required 
due to beam-growth. The top of flange gap is equal 
to (Δθ)(2h) + (θ + Δθ)(D); the first component 
represents the incremental gap opening required 
due to beam growth (also is the gap opening at the 
bottom of flange), and the latter component is the 
gap opening due to the joint rotation.

Note that if additional stories were present, beam-growth 
at each subsequent level would increase proportionally 
to the height of the bottom of flange level at that location 
only. For example, if there was an additional floor level in 
the example shown, the bottom of the flange gap would be 
equal to (Δθ)(3h) and the top of flange gap would be equal 
to (Δθ)(3h) + (θ + Δθ)(D). That is, the component due to 
the gap opening due to the joint rotation remains constant, 
and only the incremental gap opening due to beam growth 
increases with story height. Furthermore, to capture the 
beam-growth behavior about the top flange in the numeri-
cal model response, an alternate (but more complex) HBE-
to-VBE model presented by Dowden and Bruneau (2014) 
would be required.

Two alternative modifications to the original proposed 
NewZ-BREAKSS rocking flange detail (Dowden and Bru-
neau, 2011) are proposed to eliminate the effects due to 
beam growth observed in the referenced large-scale NZ-
SC-SPSW test. The first modification is to provide a semi-
spherical bearing bar plate at the end of the HBE flange 
and reinforcement plates, as shown in Figure 22a. The sec-
ond option is to provide both a semispherical bearing bar 
plate and additional PT elements near the bottom of the top 
flange, as shown in Figure  22b; these latter supplemental 
PT elements would be designed to always remain in tension. 
Although the first alternative should eliminate beam-growth 
effects, the latter option would further enhance the perfor-
mance of the NewZ-BREAKSS connection and would also 
provide some increase in the recentering potential of the PT 
boundary frame.

SUMMARY AND CONCLUSIONS

Self-centering steel plate shear walls having NewZ-
BREAKSS connections (i.e., NZ-SC-SPSW) are an alterna-
tive lateral-force-resisting system to conventional steel plate 

Semi-Spherical 
Bearing Plate

(Circular Bar Cut 
Longitudinally)

Typ.

Add'l PT  For
Clamping Force

)b()a(

Fig. 22. Modified NewZ-BREAKSS detail: (a) alternative 1; (b) alternative 2.
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shear walls for buildings located in regions of high seismic-
ity. In this paper, the fundamental kinematic behavior of the 
NZ-SC-SPSW has been established. Closed-form solutions 
equations were derived for (1) HBE strength demands along 
the HBE based on capacity design principles, (2) infill web 
plate strains for HBE-to-VBE rocking joints, and (3) unre-
strained beam growth with frames with rocking joints 
susceptible to beam-growth effects. Additionally, numeri-
cal models for the NewZ-BREAKSS connection using the 
programs SAP2000 and OpenSees were presented. Further-
more, nonlinear pushover analyses were conducted to vali-
date the derived HBE strength demand equations and to 
provide insight on the effects of the PT on base shear versus 
roof drift frame response. The equations and free-body dia-
grams presented not only provide insight on the behavior of 
the NZ-SC-SPSW system, but also inform design. Further-
more, a modified NewZ-BREAKSS connection is proposed 
to eliminate beam-growth effects observed from recent 
large-scale tests (Dowden and Bruneau, 2014; Dowden et 
al., 2016).

ACKNOWLEDGMENTS

Financial support for this study was provided by the National 
Science Foundation as part of the George E. Brown Network 
for Earthquake Engineering Simulation under award num-
ber CMMI-0830294. Additional financial support for D. 
Dowden was provided by MCEER. Any opinions, findings, 
conclusions and recommendations presented in this paper 
are those of the authors and do not necessarily reflect the 
views of the sponsors.

REFERENCES

AIJ (1995), “Performance of Steel Buildings During the 
1995 Hyogoken–Nanbu Earthquake,” Tokyo: Archi-
tectural Institute of Japan. (In Japanese with English 
summary).

AISC (2010), Seismic Provisions for Structural Steel Build-
ings, ANSI/AISC 341-05, American Institute of Steel 
Construction, Chicago, IL.

Berman, J. and Bruneau, M. (2008), “Capacity Design of 
Vertical Boundary Elements in Steel Plate Shear Walls,” 
Engineering Journal, AISC, Vol. 45, No. 1, 1st Quarter, 
pp. 57–71.

Christopoulos, C., Filiatrault, A., Uang, C.M. and Folz, B. 
(2002), “Posttensioned Energy Dissipating Connections 
for Moment-Resisting Steel Frame,” Journal of Structural 
Engineering, ASCE, Vol. 128, No. 9, pp. 1,111–1,120.

Christopoulos, C., Pampanin, S. and Priestley, M.J.N. (2003), 
“Performance-Based Seismic Response of Frame Struc-
tures Including Residual Deformations. Part I: Single- 
Degree of Freedom Systems,” Journal of Earthquake 
Engineering, Vol. 7, No. 1, pp. 97–118.

Clayton, P.M. (2013), “Self-Centering Steel Plate Shear 
Wall: Subassembly and Full-Scale Testing,” Ph.D. disser-
tation, Department of Civil and Environmental Engineer-
ing, University of Washington, Seattle, WA.

Clayton, P.M., Berman, J.W. and Lowes, L.N. (2012), “Seis-
mic Design and Performance of Self-Centering Steel 
Plate Shear Walls,” Journal of Structural Engineering, 
ASCE, Vol. 138, No. 1, pp. 22–30.

Clifton, G.C. (1996), “Development of Perimeter Moment-
Resisting Steel Frames Incorporating Semi-Rigid Elastic 
Joints,” Proc. New Zealand National Society for Earth-
quake Engineering Conference, pp. 177–184.

Clifton, G.C. (2005), “Semi-Rigid Joints for Moment Resist-
ing Steel Framed Seismic Resisting Systems,” Ph.D. 
dissertation, Department of Civil and Environmental 
Engineering, University of Auckland, New Zealand.

Clifton, G.C., MacRae, G.A., Mackinven, H., Pampanin, 
S. and Butterworth, J. (2007), “Sliding Hinge Joints and 
Subassemblies for Steel Moment Frames,” Proc. New 
Zealand Society of Earthquake Engineering Annual 
Conference, Paper 19, Palmerston North, New Zealand.

CSI (2009), “SAP2000: Static and Dynamic Finite Element 
Analysis of Structures (Version 14.1.0),” Computers and 
Structures Inc., Berkeley, CA.

Dowden, D.M. (2014), “Resilient Self-Centering Steel Plate 
Shear Walls,” Ph.D. dissertation, Department of Civil and 
Environmental Engineering, University at Buffalo, Buf-
falo, NY.

Dowden, D.M. and Bruneau, M. (2014), “Analytical and 
Experimental Investigation of Self-Centering Steel 
Plate Shear Walls,” Technical Report MCEER-14-0010, 
Multidisciplinary Center for Earthquake Engineering 
Research, State University of New York Buffalo, Buffalo, 
New York.

Dowden, D.M., Clayton, P.M., Li, C.-H., Berman, J.W., 
Bruneau, M, Lowes, L.N. and Tsai, K.C. (2016), “Full-
Scale Pseudo-Dynamic Testing of Self-Centering 
Steel Plate Shear Walls,” Journal of Structural Engi-
neering, ASCE, Vol.  142, No.  1, doi: 10.1061/(ASCE)
ST.1943-541X.0001367.

Dowden, D.M. and Bruneau, M. (2011), “NewZ-BREAKSS: 
Post-Tensioned Rocking Connection Detail Free of Beam 
Growth,” Engineering Journal, AISC, Vol 48, No. 2, 2nd 
Quarter, pp. 153–158.

117-136_EJQ316_2015-23R.indd   134 6/21/16   2:05 PM



ENGINEERING JOURNAL / THIRD QUARTER / 2016 / 135

Dowden, D.M., Purba, R. and Bruneau, M. (2012),“Behav-
ior of Self-Centering Steel Plate Shear Walls and Design 
Considerations.” Journal of Structural Engineering, 
ASCE, Vol. 138, No. 1, pp. 11–21.

Garlock, M. (2002), “Design, Analysis, and Experimen-
tal Behavior of Seismic Resistant Post-Tensioned Steel 
Moment Frames,” Ph.D. dissertation, Department of 
Civil and Environmental Engineering, Lehigh University, 
Bethlehem, PA.

Garlock, M., Ricles, J. and Sause, R. (2005), “Experimental 
Studies of Full-Scale Posttensioned Steel Connections,” 
Journal of Structural Engineering, ASCE, Vol.  131, 
No. 3, pp. 438–448.

Kawashima, K., MacRae, G.A., Hoshikuma, J.-I. and 
Nagaya, K. (1998), “Residual Displacement Response 
Spectrum,” Journal of Structural Engineering, ASCE, 
Vol. 124, No. 5, pp. 523–530.

Krawinkler, H., Anderson, J., Bertero V., Holmes, W. and 
Theil, C., Jr. (1996), “Steel Buildings,” Earthquake Spec-
tra, Vol. 12, No. S1, pp. 25–47.

MacRae, G.A., Clifton, G.C., Mackinven, H., Mago, N., But-
terworth, J. and Pampanin, S. (2008), “The Sliding Hinge 
Joint Moment Connection,” Bulletin of the New Zealand 
Society for Earthquake Engineering, Vol.  43, No.  3, 
pp. 202–212.

Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. 
(2009), “Open System for Earthquake Engineering Simu-
lation User Command-Language Manual—OpenSees 
Version 2.0,” Pacific Earthquake Engineering Research 
Center, University of California, Berkeley, Berkeley, CA.

Pampanin, S., Christopoulos, C. and Priestley, M.J.N. 
(2003), “Performance-Based Seismic Response of Frame 
Structures Including Residual Deformations. Part II: 
Multi-Degree of Freedom Systems,” Journal of Earth-
quake Engineering, Vol. 7, No. 1, pp. 119–147.

Ricles J.M., Sause R., Peng, S. and Lu, L. (2002), “Experi-
mental Evaluation of Earthquake Resistant Posttensioned 
Steel Connections,” Journal of Structural Engineering, 
ASCE, Vol. 128, No. 7, pp. 850–859.

Rojas, P., Ricles, J.M. and Sause, R. (2005), “Seismic Perfor-
mance of Post-Tensioned Steel Moment Resisting Frames 
with Friction Devices,” Journal of Structural Engineer-
ing, ASCE, Vol. 131, No. 4, pp. 529–540.

Sabelli, R. and Bruneau, M. (2007), Steel Plate Shear Walls, 
Design Guide 20, AISC, Chicago, IL.

Webster, D.J. (2013), “The Behavior of Unstiffened Steel 
Plate Shear Wall Web Plates and Their Impact on the 
Vertical Boundary Elements,” Ph.D. dissertation, Depart-
ment of Civil and Environmental Engineering, University 
of Washington, Seattle, WA.

Winkley, T.B. (2011), “Self-Centering Steel Plate Shear 
Walls: Large Scale Experimental Investigation,” M.S. 
thesis, Department of Civil and Environmental Engineer-
ing, University of Washington, Seattle, WA.

117-136_EJQ316_2015-23R.indd   135 6/21/16   2:05 PM


	117-136_EJQ316_2015-23R
	137-146_EJQ316_2015-29
	147-158_EJQ316_2015-31
	159-172_EJQ316_2015-32



